Abstract

Thin organic films find expanding applications in electronic and optoelectronic devices, biotechnology, food packing, and for many other purposes. Among other factors, the stability of films with a thickness below a micrometer is determined by the zero-point and thermal fluctuations of the electromagnetic field. These fluctuations result in the van der Waals and Casimir free energy and forces between a film and a substrate. The fluctuation-induced force may be both attractive and repulsive making the film either more or less stable, respectively. Here, we review recently obtained results for the Casimir free energy of both freestanding and deposited on the metallic and dielectric substrates peptide films. We also perform computations for the free energy of the peptide films deposited on a silica glass substrate in the region of parameters where this free energy vanishes. Possible applications of the obtained results are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call