Abstract
The contribution of elastic scattering to single-event upset (SEU) by low-energy protons is usually considered negligible. This paper develops the formulas needed for calculating the cross section (CS) to create Si recoils of the elastic scattering of protons, muons, and electrons in silicon devices. The results are used to calculate SEU CS. This is compared with existing experimental results and with Monte Carlo calculations. For protons, the elastic scattering-induced SEU has a dominant role in sensitive devices at energies between about 2 and 10 MeV. The sum of this process with the inelastic scattering and direct ionization is in good agreement with experiments. For muons, the elastic SEU is significant at energies larger than 100 MeV. In the atmosphere, such muons have high flux. However, their elastic CS is small and the effect of the Si recoils is less important than that due to neutrons and protons in the atmosphere. For electrons, the elastic scattering starts to be significant at tens of MeV energies, as found experimentally. The expressions of elastic scattering were used for calculating the nuclear stopping power and the nonionizing energy loss (NIEL) of protons, muons, and electrons. The results are in agreement with published data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.