Abstract

The liver is an essential organ for nutrient and drug metabolism - possessing the remarkable ability to sense environmental and metabolic stimuli and provide an optimally adaptive response. Early growth response 1 (Egr1), an immediate early transcriptional factor which acts as a coordinator of the complex response to stress, is induced during liver injury and controls the expression of a wide range of genes involved in metabolism, cell proliferation, and role of Egr1 in liver injury and repair, deficiency of Egr1 delays liver regeneration process. The known upstream regulators of Egr1 include, but are not limited to, growth factors (e.g. transforming growth factor β1, platelet-derived growth factor, epidermal growth factor, hepatocyte growth factor), nuclear receptors (e.g. hepatocyte nuclear factor 4α, small heterodimer partner, peroxisome proliferator-activated receptor-γ), and other transcription factors (e.g. Sp1, E2F transcription factor 1). Research efforts using various animal models such as fatty liver, liver injury, and liver fibrosis contribute greatly to the elucidation of Egr1 function in the liver. Hepatocellular carcinoma (HCC) represents the second leading cause of cancer mortality worldwide due to the heterogeneity and the late stage at which cancer is generally diagnosed. Recent studies highlight the involvement of Egr1 in HCC development. The purpose of this review is to summarize current studies pertaining to the role of Egr1 in liver metabolism and liver diseases including liver cancer.

Highlights

  • Growth response 1 (Egr1), an immediate early transcriptional factor which acts as a coordinator of the complex response to stress, is induced during liver injury and controls the expression of a wide range of genes involved in metabolism, cell proliferation, and inflammation

  • The purpose of this review is to summarize current studies pertaining to the role of Early growth response 1 (Egr1) in liver metabolism and liver diseases including liver cancer

  • Growth response 1 (Egr1) is an immediate early, zinc finger transcription factor that was first identified based upon its induction by nerve growth factor (NGF) in rat PC12 cells, which is why it was initially known as nerve growth factor inducible protein A (NGFI-A)[1]

Read more

Summary

Open Access

How to cite this article: Magee N, Zhang Y. Role of early growth response 1 in liver metabolism and liver cancer. Article history: Received: 15 Aug 2017 First decision: 25 Sep 2017 Revised: 10 Oct 2017 Accepted: 7 Nov 2017 Published: 20 Nov 2017

INTRODUCTION
Repressor domain
Promote acute injury Inhibit chronic injury
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.