Abstract

We report the influence of shear deformation on the microstructure of water‐saturated olivine and clinopyroxene aggregates. Prior to deformation, the aqueous fluid was isolated in pockets along grain corners in the olivine‐water aggregates, while it was interconnected by a network of grain‐edge tubules in the clinopyroxene‐water aggregate. During deformation of both types of aggregates, the aqueous fluid phase segregates into grain boundaries at an angle of ∼16° to the shear direction, inclined in a sense antithetic to the applied shear. Fluid‐rich planes formed by such dynamic wetting of grain boundaries lead to the formation of high permeability paths in the matrix. In a deforming mantle, such high permeability paths will enhance the efficiency of aqueous fluid extraction from subducting slabs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.