Abstract

BackgroundLateral habenula nucleus (LHb) has recently been noted for its role in stress-induced depressive disorder. Yet little is known about the mechanisms by which external stimuli or depression induces pathological alteration in the LHb. MethodsChronic unpredictable mild stress (CUMS) was employed to model depressive-like behaviors in adult rats. We examined expressions of DNA methyltransferases (Dnmts) mRNA and protein and global DNA methylation levels in LHb of CUMS-induced depressive rats. Then 5-aza-2′-deoxycytidine (5-aza), a Dnmts inhibitor, was infused into the LHb of native rats to test the effects of hypomethylation in the LHb. The gene expressions in the LHb and the levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in dorsal raphe nucleus (DRN) were examined in 5-aza infusion rats by quantitative real-time PCR and high performance liquid chromatography, respectively. ResultsRats were exposed to CUMS for 21 days and depressive-like behaviors were induced as expected. We observed significant decrease in mRNA and protein expressions of Dnmt1 and DNA hypomethylation in LHb of depressive rats. These phenomenon suggests that CUMS-induced depressive-like behaviors are related with DNA hypomethylation in the LHb. Local 5-aza infusion into LHb of native rat resulted in global DNA hypomethylation in the LHb and induced depressive-like behaviors which are featured with lack of interest and investment in the environment, behavioral despair and anhedonia. Moreover, DNA hypomethylation in the LHb increased transcription of β calcium/calmodulin dependent protein kinase II and glutamate receptor 1 in the LHb and attenuated the levels of 5-HT and 5-HIAA in the DRN. Our data suggested that alteration of DNA methylation in the LHb may control 5-HT neuronal activity in the DRN to regulate emotional state. ConclusionsDNA hypomethylation in the LHb is involved in the development of depressive-like behavior and suitable methylation state contributes to the emotional stabilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call