Abstract
A series of 1-ns MD simulations were performed on the scorpion toxin Lqh III in native and disulfide bond broken states. The removal of disulfide bonds has caused hydrogen bond network alteration in the five-residue turn, the long loop, the alpha-helix, the loop connecting strands II and III, and the C-terminal region. In addition and more importantly, it has influenced the amplitude of the fluctuations of five-residue turn, loops, and C-terminal region with a minor effect on the fluctuations of the cysteines in the broken bond sites. These findings suggest that disulfide bonds are not the most important factors in rigidifying their own locations, while they have more important effects at a global scale. Furthermore, our results reveal that disulfide bonds have considerable influence on the functionally important essential modes of motions and the correlations between the motions of the binding site residues. Therefore, we can conclude that disulfide bonds have a crucial role in modulating the function via adjusting the dynamics of scorpion toxin molecules. Although this conclusion cannot be generalized to all peptides and proteins, it demonstrates the importance of more investigations on this aspect of disulfide bond efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.