Abstract

The K homology module, one of the most common RNA-binding motifs, is present in multiple copies in both prokaryotic and eukaryotic regulatory proteins. Increasing evidence suggests that self-aggregation of KH modules has a functional role. We have used a combination of techniques to characterize the behavior in solution of the third KH domain of Nova-1, a paradigmatic KH protein. The possibility of working on the isolated module allowed us to observe specifically the homodimerization and RNA-binding properties of KH domains. We provide conclusive evidence that self-association of Nova-1 KH3 occurs in solution even in the absence of RNA. Homodimerization involves a specific protein/protein interface. We also studied the dynamical behavior of Nova-1 KH3 in isolation and in complex with RNA. These data provide a model for the mechanism of KH/RNA recognition and suggest functional implications of dimerization in KH complexes. We discuss our findings in the context of the whole KH family and suggest a generalized mode of interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.