Abstract

Abstract Role of three rare earth oxides, viz., La2O3, CeO2 and Yb2O3 on reaction sintering of magnesium aluminate spinel having molar ratio of MgO:Al2O3 = 1:2 from its solid oxide precursors was investigated in static and dynamic heating conditions. Effect of these additives (3 wt%) on densification behavior, phase assemblage and microstructure development were studied in the temperatures of 1500–1700 °C. Yb2O3 enhanced the sintering of spinel, while La2O3 and CeO2 negatively impacted the sintering of magnesium aluminate spinel which can be discerned from the shrinkage curve of TMA as well as from static firing regime. This is ascribed to the formation of secondary phases in La2O3 and CeO2 containing samples which have different crystalline structures to that of spinel. This anisotropy due to different crystallinity hindered the pore shrinkage and pore removal and thereby retarded the densification. Whereas, the cubic structure of the secondary phase formed in Yb2O3 containing sample which is isotropic with the crystalline orientation of the parental spinel phase assisted the densification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.