Abstract
Our previous studies revealed that a two-component system (TCS), DevS, and DevR, regulate both nitric oxide (NO) signaling and NO homeostasis in the actinobacterium Streptomyces coelicolor A3(2) M145, suggesting a reasonable system for NO-dependent metabolism. In this study, sequence alignment of DevR and DevR homologs found Asp66 (D66) and Thr196 (T196) as predicted phosphorylation sites of DevR. Phos-tag gel electrophoretic mobility shift assay suggested that D66 and T196 are involved in the phosphorylation of DevR. The respective point mutations of D66 and T196 significantly decreased the transcriptional activity of DevR, which affected nitrite production and aerial mycelium formation. These results suggested that both D66 and T196 of DevR are important for the regulation of NO homeostasis and signaling in S. coelicolor A3(2) M145.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.