Abstract

Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia are the two characteristic types of primary aldosteronism. Dysregulation of adrenal cortical cell proliferation contributes to both diseases. We previously demonstrated that APA expressed less dopamine D2 receptor than the respective non-tumor tissue and might contribute to the overproduction of aldosterone. As activation of D2 receptor inhibits the proliferation of various cells, downregulation of D2 receptor in APA may play a role in the tumorigenesis of APA. In this study, we demonstrate that D2 receptor plays a role in angiotensin II (AII)-stimulated adrenal cortical cell proliferation. The D2 receptor agonist, bromocriptine, inhibited AII-stimulated cell proliferation in primary cultures of the normal human adrenal cortex and APA through attenuating AII-induced phosphorylation of PK-stimulated cyclin D1 protein expression and cell proliferation. D2 receptor also inhibited AII-induced ERK1/2 phosphorylation. Our results demonstrate that, in addition to inhibiting aldosterone synthesis/production, D2 receptor exerts an anti-proliferative effect in adrenal cortical and APA cells by attenuating PKCμ and ERK phosphorylation. The lower level of expression of D2 receptor in APA may augment cell proliferation and plays a crucial role in the tumorigenesis of APA. Our novel finding suggests a new therapeutic target for primary aldosteronism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call