Abstract

Calnexin is an endoplasmic reticulum protein that has a role in folding newly synthesized glycoproteins. In this study, we used site-specific mutagenesis to disrupt cysteine and histidine amino acid residues in the N- and P-domains of calnexin and determined whether these mutations impact the structure and function of calnexin. We identified that disruption of the N-domain cysteines resulted in significant loss of the chaperone activity of calnexin toward the glycosylated substrate, IgY, while disruption of the P-domain cysteines only had a small impact toward IgY. We observed that wild-type calnexin as well as the P-domain double cysteine mutant contained an intramolecular disulfide bond which is lost when the N-domain cysteines are mutated. Mutation to the N-domain histidine and N-domain cysteines resulted in increased binding of ERp57. Mutations to the P-domain cysteines further enhanced ERp57 binding to calnexin. Taken together, these observations indicated that the cysteine residues within calnexin were important for the structure and function of calnexin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call