Abstract

The investigation aimed to augment carbohydrate accumulation in the marine cyanobacterium Leptolyngbya valderiana BDU 41001 to facilitate bioethanol production. Under the standardised physiochemical condition (SPC), i.e. 90 µmol photon m−2 s−1 light intensity, initial culture pH 8.5, 35 °C temperature and mixing at 150 rpm increased the carbohydrate productivity ∼70 % than the control, while a 47 % rise in content was obtained under the nitrate (N)-starved condition. Therefore, a two-stage cultivation strategy was implemented, combining SPC at the 1st stage and N starvation at the 2nd stage, resulting in 80 % augmentation of carbohydrate yield, which enhanced the bioethanol yield by ∼86 % as compared to the control employing immobilised yeast fermentation. Moreover, biomass utilisation was maximised by extracting C-phycocyanin, where a ∼77 % rise in productivity was recorded under the SPC. This study highlights the potential of L. valderiana for pilot-scale biorefinery applications, advancing the understanding of sustainable biofuel production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.