Abstract

We investigate the interaction of CO2 with metallic and oxidized Cu(110) surfaces using a combination of near-ambient pressure scanning tunneling microscopy (NAP-STM) and theoretical calculations. While the Cu(110) and full CuO films are inert, the interface between bare Cu(110) and the CuO film is observed to react instantly with CO2 at a 10 mbar pressure. The reaction is observed to proceed from the interfacial sites of CuO/Cu(110). During reaction with CO2, the CuO/Cu(110) interface releases Cu adatoms which combine with CO3 to produce a variety of added Cu-CO3 structures, whose stability depends on the gas pressure of CO2. A main implication for the reactivity of Cu(110) is that Cu adatoms and highly undercoordinated CuO segments are created on the Cu(110) surface through the interaction with CO2, which may act as reaction-induced active sites. In the case of CO2 hydrogenation to methanol, our theoretical assessment of such sites indicates that their presence may significantly promote CH3OH formation. Our study thus implies that the CuO/Cu(110) interfacial system is highly dynamic in the presence of CO2, and it suggests a possible strong importance of reaction-induced Cu and CuO sites for the surface chemistry of Cu(110) in CO2-related catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call