Abstract

There is a close interaction between the processes involved in osteogenesis and hemopoiesis. In developing bone, the osteoclasts, cells of hemopoietic origin, resorb and invade the calcified cartilage rudiment. As a result, the primitive marrow cavity is formed and hemopoiesis initiates. Osteogenic cells-osteoblasts and osteocytes-control the development and activity of the osteoclasts through the local release of factors. One factor responsible for this osteoblast-osteoclast interaction is colony-stimulating factor-1 (CSF-1). Studies performed on the osteopetrotic op/op mouse mutant have established that this factor is essential for proliferation and differentiation of the osteoclasts. Expression of CSF-1 receptors by mature osteoclasts and osteoclast precursors strongly suggests that CSF-1 action is exerted directly on cells of this lineage. In vivo, CSF-1 synthesis by osteoblasts is temporally and spatially related to sites of osteoclast development. Thus CSF-1 may represent one of the factors responsible for coupling hemopoiesis to osteogenesis. In vitro, osteoblasts express at least 4 transcripts encoding either a secreted or a membrane-bound form of CSF-1. At the protein level, osteoblasts in vitro synthesize the membrane-bound form and secrete the majority of CSF-1 as a proteoglycan, a small fraction of which is integrated into the matrix. These different molecular forms may locally restrict the biological action of this cytokine. Indeed, injection of recombinant human CSF-1 in op/ op mutants does not correct the osteoclast deficiency in the metaphyseal spongiosa of long bones, and sclerosis persists at this site. Similarly, the deficiency of some tissue macrophage populations in op/op mice is only partially or not at all corrected by injection of CSF-1. The expression of CSF-1 receptors by mature osteoclasts may imply that CSF-1 also influences their bone resorbing activity. Indeed, CSF-1 has been shown to induce osteoclast fusion, spreading, and survival. These findings suggest that CSF-1 is essential for the proliferation, differentiation, activity, and survival of tissue macrophages and osteoclasts, cells involved in tissue turnover. Furthermore, they corroborate the view that both osteoclasts and tissue macrophages stem from a CSF-1-dependent common precursor along the macrophage lineage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.