Abstract

In the late inspiral phase, gravitational waves from binary neutron star mergers carry the imprint of the equation of state due to the tidally deformed structure of the components. If the stars contain solid crusts, then their shear modulus can affect the deformability of the star and, thereby, modify the emitted signal. Here, we investigate the effect of realistic equations of state (EOSs) of the crustal matter, with a realistic model for the shear modulus of the stellar crust in a fully general relativistic framework. This allows us to systematically study the deviations that are expected from fluid models. In particular, we use unified EOSs, both relativistic and non-relativistic, in our calculations. We find that realistic EOSs of crusts cause a small correction, of $\sim 1\%$, in the second Love number. This correction will likely be subdominant to the statistical error expected in LIGO-Virgo observations at their respective advanced design sensitivities, but rival that error in third generation detectors. For completeness, we also study the effect of crustal shear on the magnetic-type Love number and find it to be much smaller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.