Abstract

Strong incompressible three-dimensional magnetohydrodynamic turbulence is investigated by means of high-resolution direct numerical simulations. The simulations show that the configuration space is characterized by regions of positive and negative cross-helicity, corresponding to highly aligned or antialigned velocity and magnetic field fluctuations, even when the average cross-helicity is zero. To elucidate the role of cross-helicity, the spectra and structure of turbulence are obtained in "imbalanced" regions where cross-helicity is nonzero. When averaged over regions of positive and negative cross-helicity, the result is consistent with the simulations of balanced turbulence. An analytical explanation for the obtained results is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.