Abstract

IntroductionC-reactive protein (CRP) is one of the biomarkers for the diagnosis and assessment of disease activity in rheumatoid arthritis (RA). CRP is not only the by-product of inflammatory response, but also plays proinflammatory and prothrombotic roles. The aim of this study was to determine the role of CRP on bone destruction in RA.MethodsCRP levels in RA synovial fluid (SF) and serum were measured using the immunoturbidimetric method. The expression of CRP in RA synovium was assessed using immunohistochemical staining. CD14+ monocytes from peripheral blood were cultured with CRP, and receptor activator of nuclear factor-κB ligand (RANKL) expression and osteoclast differentiation were evaluated using real-time PCR, counting tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and assessing bone resorbing function. CRP-induced osteoclast differentiation was also examined after inhibition of Fcγ receptors.ResultsThere was a significant correlation between CRP levels in serum and SF in RA patients. The SF CRP level was correlated with interleukin (IL)-6 levels, but not with RANKL levels. Immunohistochemical staining revealed that compared with the osteoarthritis synovium, CRP was more abundantly expressed in the lining and sublining areas of the RA synovium. CRP stimulated RANKL production in monocytes and it induced osteoclast differentiation from monocytes and bone resorption in the absence of RANKL.ConclusionsCRP could play an important role in the bony destructive process in RA through the induction of RANKL expression and direct differentiation of osteoclast precursors into mature osteoclasts. In the treatment of RA, lowering CRP levels is a significant parameter not only for improving disease activity but also for preventing bone destruction.

Highlights

  • C-reactive protein (CRP) is one of the biomarkers for the diagnosis and assessment of disease activity in rheumatoid arthritis (RA)

  • CRP is a member of the pentraxin protein family, which is composed of five 23-kDa subunits and it can increase by 1,000-fold or more with infection, inflammation, and tissue injury [14,15]

  • We found that CRP induced receptor activator of nuclear factor kappa-B ligand (RANKL) expression in peripheral blood monocytes and osteoclast precursors and stimulated these cells to differentiate into osteoclasts

Read more

Summary

Introduction

C-reactive protein (CRP) is one of the biomarkers for the diagnosis and assessment of disease activity in rheumatoid arthritis (RA). CRP is the by-product of inflammatory response, and plays proinflammatory and prothrombotic roles. The aim of this study was to determine the role of CRP on bone destruction in RA. Rheumatoid arthritis (RA) is a systemic inflammatory disease characterized by synovitis of peripheral joints and subsequent joint destruction. Assessment of disease activity is based on the count of tender and swollen joints, the measurement of erythrocyte sedimentation rate (ESR) or serum levels of acute phase reactants such as C-reactive protein (CRP), and the pain score of patients [1,2,3]. As an inflammatory biomarker for RA, CRP correlates with disease activity, histological changes in the synovium, and radiological progression, responding very.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call