Abstract

The objective of this study was to examine the role of cylcooxygenase (COX)-2-derived prostaglandins (PG) in modulating the renal hemodynamic effects of norepinephrine (NE) during low or normal sodium intake. The relative contribution of each COX isoform in producing the PG that attenuate the renal NE effects during normal sodium intake was also evaluated. The renal response to three doses of NE (50, 100, and 250 ng. kg(-1). min(-1)) was evaluated in anesthetized dogs pretreated with vehicle, a selective COX-2 inhibitor (nimesulide), or a nonselective COX inhibitor (meclofenamate). Intrarenal infusion of the two lower doses of NE in vehicle-pretreated dogs with normal sodium intake (n = 8) elicited an increase in renal vascular resistance (RVR; 21 and 34%) without inducing changes in glomerular filtration rate (GFR). The highest dose of NE in this group induced a further increment in RVR (113%) and a decrease in GFR (33%). Pretreatment with nimesulide in dogs with normal sodium intake (n = 7) did not modify the NE-induced increments in RVR but enhanced the decreases in GFR induced by the three NE doses (12, 26, and 64%). The renal hemodynamic response to NE in meclofenamate-pretreated dogs with normal sodium intake (n = 7) was similar to that found in dogs pretreated with nimesulide. Infusion of the lowest dose of NE to vehicle-pretreated dogs with low sodium intake (n = 6) did not modify GFR and elicited an increase in RVR (42%). Infusion of the second and third doses of NE led to a decrease in GFR (35 and 91%) and a rise in RVR (82 and 587%). Infusion of the first two doses of NE in nimesulide-pretreated dogs with low sodium intake (n = 5) induced a fall in GFR (64 and 92%) and an increase in RVR (174 and 2,293%) that were greater (P < 0.05) than those induced by NE in vehicle-pretreated dogs. The elevation in the urinary excretion rates of PGE(2) and 6-keto-PGF(1alpha) elicited by NE was prevented in the nimesulide-pretreated dogs. Our results show that COX-2 inhibition potentiates the renal hemodynamic effects of NE and propose that the PG involved in modulating them are mainly derived from COX-2 activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.