Abstract
Patients with major injury or illness develop protein wasting, hypermetabolism, and hyperglycemia with increased glucose flux. To assess the role of elevated counterregulatory hormones in this response, we simultaneously infused cortisol (6 mg/m2 per h), glucagon (4 ng/kg per min), epinephrine (0.6 microgram/m2 per min), and norepinephrine (0.8 micrograms/m2 per min) for 72 h into five obese subjects receiving only intravenous glucose (150 g/d). Four obese subjects received cortisol alone under identical conditions. Combined infusion maintained plasma hormone elevations typical of severe stress for 3 d. This caused a sustained increase in plasma glucose (60-80%), glucose production (100%), and total glucose flux (40%), despite persistent hyperinsulinemia. In contrast, resting metabolic rate changed little (9% rise, P = NS). Urinary nitrogen excretion promptly doubled and remained increased by approximately 4 g/d, reflecting increased excretion of urea and ammonia. Virtually all plasma amino acids declined. The increment in nitrogen excretion was similar in three additional combined infusion studies performed in 3-d fasted subjects not receiving glucose. Cortisol alone produced a smaller glycemic response (20-25%), an initially smaller insulin response, and a delayed rise in nitrogen excretion. By day 3, however, daily nitrogen excretion was equal to the combined group as was the elevation in plasma insulin. Most plasma amino acids rose rather than fell. In both infusion protocols nitrogen wasting was accompanied by only modest increments in 3-methylhistidine excretion (approximately 20-30%) and no significant change in leucine flux. We conclude: (a) Prolonged elevations of multiple stress hormones cause persistent hyperglycemia, increased glucose turnover, and increased nitrogen loss; (b) The sustained nitrogen loss is no greater than that produced by cortisol alone; (c) Glucagon, epinephrine, and norepinephrine transiently augment cortisol-induced nitrogen loss and persistently accentuate hyperglycemia; (d) Counterregulatory hormones contribute to, but are probably not the sole mediators of the massive nitrogen loss, muscle proteolysis, and hypermetabolism seen in some clinical settings of severe stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.