Abstract

Using an isolated perfused rat liver (IPRL) preparation, we assessed whether corticosterone may contribute to the rise in tumor necrosis factor (TNF) and interleukin-6 (IL-6) in rats after injection with lipopolysaccharide (LPS) or exposure to psychological stress. Intravenous infusion of LPS into the IPRL led to dose-dependent increases in TNF and IL-6 concentrations in the effluent. Anisomycin, a protein synthesis inhibitor, completely blocked the rise in TNF and IL-6 concentration in the IPRL effluent, supporting the hypothesis that the synthesis (or release) of these cytokines was dependent on protein synthesis. Intravenous infusion of corticosterone at nonstressed (35 ng/ml) and stressed levels (350 ng/ml) increased TNF and/or IL-6 release. However, when LPS was combined with corticosterone, the lower dose of corticosterone facilitated the release of cytokines, whereas the higher dose of corticosterone suppressed the release of cytokines. We then showed that isolated Kupffer cells were capable of significant TNF and IL-6 production and that corticosterone decreased LPS-induced cytokine production in these cells. Our data support the hypothesis that the liver is an important source of circulating cytokines in response to LPS. In addition, although in vitro data generally support the hypothesis that corticosterone suppresses the production of cytokines, our in situ data support the hypothesis that physiological levels of corticosterone cause an increase in TNF and IL-6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call