Abstract

This study investigated the effects of copper (Cu) on astaxanthin and lipid biological synthesis in unicellular alga Haematococcus pluvialis under high-light (HL) and nitrogen-deficiency (ND) conditions. During a 15-day cultivation period, the astaxanthin and lipid contents reached the peak values (3.32% and 47.72%) under 6 μM Cu treatment, which were increased by 66.87% and 34.99% compared to nontreated group, respectively. The application of Cu also increased the transcriptional expression of biosynthesis genes and antioxidant enzyme-related genes, as well as increased the intracellular calcium (Ca2+) level but led to a decrease in reactive oxygen species (ROS) levels. Additionally, Cu treatment induced the activation of calcium-dependent protein kinases (CDPKs) and mitogen-activated protein kinases (MAPKs). This approach simultaneously facilitated astaxanthin and lipid production, and the role of Cu were elucidated on the regulation of signal transduction (e.g., Ca2+, CDPK, MAPK and ROS) in the carotenogenesis and lipogenesis in H. pluvialis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call