Abstract

The convection, thermal conductivity, and heat transfer of hybrid nanofluid through nanoparticles has become integral part of several natural and industrial processes. In this manuscript, a new fractionalized model based on hybrid nanofluid is proposed and investigated by employing singular verses and non-singular kernels. The mathematical modeling of hybrid nanofluid is handled via modern fractional definitions of differentiations. The combined Laplace and Fourier Sine transforms have been configurated on the governing equations of hybrid nanofluid. The analytical expression of the governing temperature and velocity equations of hybrid nanofluid have been solved via special functions. For the sake of thermal performance, dimensional analysis of governing equations and suitable boundary conditions based on Mittage-Leffler function have been invoked for the first time in literature. The comparative analysis of heat transfer from hybrid nanofluid has been observed through Caputo-Fabrizio and Atangana-Baleanu differential operators. Finally, our results suggest that volume fraction has the decelerated and accelerated trends of temperature distribution and inclined and declined profile of heat transfer is observed copper and alumina nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.