Abstract

Enhanced insulin-like growth factor II (IGF-II) and type I IGF receptor (IGF-IR) gene expression in liver tumors and the development of liver tumors in transgenic mice overexpressing IGF-II in the liver suggest that the IGFs and underlying signaling cascades may play auto/paracrine roles in the control of hepatocarcinoma (HCC) cell proliferation and in their protection against apoptosis. We have focused on the role of mitogen-activated protein kinase (ERK1/2) signaling on human HepG2 and Huh-7 hepatoma cell proliferation and on the protection of these cells against drug-induced apoptosis. Physiological concentrations of IGF-I stimulated DNA replication in HepG2 cells (1.5-fold) but not in Huh-7 cells, and this effect was abolished by PD98059 (MEK-1 inhibitor). Doxorubicin or cisplatin treatment induced apoptosis (caspase-dependent poly[ADP-ribose]polymerase cleavage) in both cell lines, but dose-dependent reversion of drug-induced apoptosis (57-84%) by IGF-I was only observed in HepG2 cells. The very low level of IGF-IR at the plasma membrane of Huh-7 cells may account for their unresponsiveness to IGF-I. We have shown that drug treatment enhanced (17-fold) or did not modify constitutive ERK1/2 activity in cultured HepG2 or Huh-7 cells, respectively. In both cell lines, inhibition of constitutive and drug-induced ERK1/2 activity by PD98059 yielded a complete inhibition of drug-induced apoptosis. Altogether, our data demonstrate the heterogeneous response of human hepatoma cells to an IGF stimulus and suggest (1) that auto/paracrine effects of IGF-I/-II might contribute to the proliferation of HCC cells and to their protection against apoptosis in vivo and (2) that drug-induced activation of ERK1/2 plays a role in drug-induced apoptosis in human hepatoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call