Abstract

We analyze the quantum melting of two-dimensional Wigner molecules (WM) in confined geometries with distinct symmetries and compare it with corresponding thermal melting. Our findings unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale $n_X$. This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids." An intriguing signature of weakening liquidity with increasing temperature, $T$, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting." Our study will help comprehending melting in a variety of experimental traps - from quantum dots to complex plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call