Abstract

The near field heat transfer between two finite size one-dimensional photonic crystals separated by a small vacuum gap and maintained in nonequilibrium thermal situation is theoretically investigated. The main features of this electromagnetic transfer are discussed and compared with what is generally observed with media that support surface polaritons. It is shown that the presence of surface Bloch waves can significantly enhance heat transfers beyond the far field limit for both polarization states of electromagnetic field at subwavelength separation distances. A specific attention is addressed to the consequence of the slopes of surface Bloch waves dispersion curves on the heat transfer. In particular, it is shown that the localization of surface Bloch waves close to the light line allows to observe a transfer exaltaion at larger separation distances than the Wien wavelength. These results could open new possibilities for the development of innovative near-field technologies such as near-field thermophotovoltaic conversion, plasmon assisted nanophotolitography or near-field spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.