Abstract

Phytostabilization emerges as an efficient and enduring remediation technique for heavy metal-contaminated mine soils using plants acclimatized to such circumstances. In this research, the synergistic effects of Marrubium cuneatum, Verbascum speciosum, and Stipa arabica species, alongside municipal solid waste compost (MSWC) amendment at 0, 1, 3, and 5 % rates, were assessed for a six-month pot experiment aimed at remediating naturally polluted soil containing lead (Pb) and cadmium (Cd) and mitigating the health risks associated with these metal exposures for grazing ruminants. Applying compost improved the aboveground biomass of M. cuneatum and V. speciosum and S. arabica by 13, 19, and 18 %, respectively. Also, soil dehydrogenase and urease enzyme activities were enhanced up to 131 and 34 %. Upon MSWC application, all three species uptake Cd and Pb at a significantly lower rate, except in the V. speciosum shoot at 3 and 5 % doses, and bioaccumulation factors were markedly diminished. Compost notably augmented the antioxidant system, leading to a reduction in malondialdehyde content of V. speciosum, M. cuneatum, and S. arabica by 35, 29, and 23 %, respectively, and an elevation in chlorophyll level. Superoxide dismutase, catalase, glutathione peroxidase, and ascorbate peroxidase activities either increased or displayed no significant differences. Risk assessment revealed that MSWC substantially decreased the daily intake of Pb and Cd and their accumulation in animal organs, thereby eliminating limits on meat consumption. Findings affirm the combined efficacy of MSWC and the study species in stabilizing contaminated Pb and Cd soils, diminishing risks to animal feed security and human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call