Abstract

Organic ligands can alter the redox behavior of metal species through the generation of metal-ligand complexes. Photo-induced complexation between ligands and metals is an important, but under-appreciated, aspect of process. Acetylacetone (AA) is a good chelating agent due to keto-enol tautomerization. In the presence of AA, photoreduction of Cr(VI) is accelerated; however, it is unclear exactly how complexation is involved in UV/AA mediated Cr(VI) reduction. On the basis of spectral and kinetic analyses, this study shows that the formation of {Cr(VI)-AA}* complexes is the main mechanism of Cr(VI) reduction by UV/AA. Evidence for this includes (1) the formation rate constant of Cr(III)-AA complexes in the UV system was 2–3 orders of magnitude greater than that in the thermal system; (2) there was a linear relationship between the photons absorbed by AA and the reduction rate constants of Cr(VI); and (3) the reaction appeared initially zero-order in Cr(VI) and turned to first-order as the pool of available Cr(VI) ran out. The results presented here are not only important for the better understanding of the complexation effects in the reduction of Cr(VI), but also crucial for the possible application of the UV/AA process in many other scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.