Abstract
ObjectivesTo assess the diagnostic performance of whole-body magnetic resonance imaging (WB-MRI) by diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) in malignant tumor detection and the potential diagnostic advantages in generating fused DWIBS/3D-contrast enhanced T1w (3D-CE-T1w) images. Methods45 cancer patients underwent 18F-FDG PET-CT and WB-MRI for staging purpose. Fused DWIBS/3D-CE T1w images were generated off-line. 3D-CE-T1w, DWIBS images alone and fused with 3D-CE T1w were compared by two readers groups for detection of primary diseases and local/distant metastases. Diagnostic performance between the three WB-MRI data sets was assessed using receiver operating characteristic (ROC) curve analysis. Imaging exams and histopathological results were used as standard of references. ResultsAreas under the ROC curves of DWIBS vs. 3D-CE-T1w vs. both sequences in fused fashion were 0.97, 0.978, and 1.00, respectively. The diagnostic performance in tumor detection of fused DWIBS/3D-CE-T1w images were statistically superior to DWIBS (p<0.001) and 3D-CE-T1w (p≤0.002); while the difference between DWIBS and 3D-CE-T1w did not show statistical significance difference. Detection rates of malignancy did not differ between WB-MRI with DWIBS and 18F-FDG PET-CT. ConclusionWB-MRI with DWIBS is to be considered as alternative tool to conventional whole-body methods for tumor staging and during follow-up in cancer patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.