Abstract

La0.8MnO3 thin films have been deposited on (100) SrTiO3 substrates at different substrate temperatures by a pulsed laser deposition method. Electronic transport measurements show that a higher substrate temperature results in lower resistivity and higher insulator–metal transition temperature. Transmission electron microscope studies reveal that all the films exhibit a feature of columnar structure with the grain size decreasing with substrate temperature. We argue that the columnar grain size strongly affects the ferromagnetic transition temperature and, in turn, dominates the resistivity behavior. Based on this point, other effects, such as of annealing and film thickness, on the electronic properties are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.