Abstract

Relevant mechanical properties of bone The mechanical properties of bone material are determined by the relative amounts of its 3 major constituents: mineral, water, and organics (mainly type I collagen); by the quality of these components; and by how the resulting material is arranged in space. For our purposes, the mechanical properties of bone can be summed up as follows: modulus of elasticity, yield stress and yield strain, post-yield stress and post-yield strain, and the total area under the stress-strain curve. Also important are some fracture mechanics properties, but these are not discussed here. A typical tensile stress-strain curve for a bone specimen is shown in Fig. 1. The modulus of elasticity shows how stiff the bone material is. Indeed, stiffness is the prime property of bone, distinguishing it from tendon, which has much less tensile stiffness, almost no shear stiffness, but which is nearly as strong and is much tougher. Yield stress and strain determine how much energy can be absorbed before irreversible changes take place. Post-yield stress and strain determine mainly how much energy can be absorbed after yield but before fracture. Irreversible changes take place at yield, caused by microdamage. The total area under the stress-strain curve is equivalent to the work that must be done per unit volume on the specimen before it breaks. Fracture mechanics properties show the extent to which bone is resistant to crack initiation and to crack travel (which are different things and governed by somewhat different features). In fact, crack travel resistance is given rather well by post-yield stress and strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call