Abstract

The decomposition of toluene (a model tar compound) in CO2 was investigated at ambient and elevated temperatures in a dielectric barrier discharge (DBD). The effects of reaction parameters, such as the residence time (0.47–4.23 s), plasma power (5–40 W), toluene concentration (20–82 g/Nm3), and temperature (20–400 °C), were investigated. The DBD was shown to be an effective technique for tar removal. The percentage removal of tar increased with increasing the plasma power and residence time (to as high as 99% at the residence time of 4.23 s). The maximum selectivity to the two major gaseous products, CO and H2, was 73.5 and 21.9%, respectively. Solid residue formation was also observed inside the reactor. The synergetic effect of the temperature and plasma power was studied. As temperature increased, the decomposition of toluene decreased slightly from 99 to 88% (from ambient to 400 °C at 40 W) and the selectivity of CO and H2 decreased as a result of the increased rate of recombination of CO and O. The selectivity to lower hydrocarbons increased with the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.