Abstract

The effect of CO 2 and NaCl on the initial stage of atmospheric corrosion of AZ91 magnesium alloy was studied. The observation of surface morphology by optical microscopy (OM), scanning electron microscopy (SEM) and the analysis of corrosion products by X-ray diffraction (XRD) were integrated to investigate corrosion evolution. The results showed that NaCl stimulated the corrosion by promoting the formation of thin electrolyte film, increasing the conductivity and breaking the protective film in the absence of CO 2. The morphology of the corroded samples with deposited NaCl was more homogenous in the presence of CO 2 It was suggested that NaCl-induced corrosion was inhibited in the presence of CO 2 by the formation of slightly soluble corrosion products containing hydroxy carbonates and hydroxy chlorides that provided a partly protective layer on the surface of the magnesium alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.