Abstract
Abstract Under global warming from the doubling of CO2, the equatorial Pacific experiences an El Niño–like warming, as simulated by most global climate models. A new climate feedback and response analysis method (CFRAM) is applied to 10 years of hourly output of the slab ocean model (SOM) version of the NCAR Community Climate System Model, version 3.0, (CCSM3-SOM) to determine the processes responsible for this warming. Unlike the traditional surface heat budget analysis, the CFRAM can explicitly quantify the contributions of each radiative climate feedback and of each physical and dynamical process of a GCM to temperature changes. The mean bias in the sum of partial SST changes due to each feedback derived with CFRAM in the tropical Pacific is negligible (0.5%) compared to the mean SST change from the CCSM3-SOM simulations, with a spatial pattern correlation of 0.97 between the two. The analysis shows that the factors contributing to the El Niño–like SST warming in the central Pacific are different from those in the eastern Pacific. In the central Pacific, the largest contributor to El Niño–like SST warming is dynamical advection, followed by PBL diffusion, water vapor feedback, and surface evaporation. In contrast, in the eastern Pacific the dominant contributor to El Niño–like SST warming is cloud feedback, with water vapor feedback further amplifying the warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.