Abstract
Extensive weathering suffered by sandstone in natural outcrops as well as in historical buildings could be attributed among other mechanisms to the action of wetting and drying cycles. We have recently shown how to quantify the stresses generated during such cycles to determine whether damage can take place. This procedure is further developed in this paper and applied to the Tarifa sandstone, a sandstone with a 7 wt % content of clay minerals and used in the main façade of the church of San Mateo in Tarifa (Cádiz, Spain) for which the relevant material properties are measured. It is shown that tensile stresses during drying can cause cracking of thin elements and that shear forces can cause buckling of wetted surfaces more generally, eventually resulting in scaling and/or contour scaling. These predictions are supported by visual observations on the monument showing degradation patterns characteristic of those types of damage. Similar weathering forms have been observed in natural sandstone landscapes. Application of swelling inhibitors (e.g., cationic surfactants) that selectively adsorb on the clay basal planes, results in a substantial swelling reduction. This confirms that the swelling clays typically present in sandstone are pivotal for its weathering and indicates that swelling inhibitors are a potentially valuable treatment to prevent or minimize damage to stone. The circumstances that would lead to weathering are discussed in relation to sandstone material properties in the wet and dry state. Clay‐bearing stones are shown to exhibit softening during wetting, as well as viscoelastic stress relaxation, which is expected to limit the extent of damage. These results may aid in the better understanding of sandstone weathering both in nature and in urban environment and may help develop conservation methods to mitigate wetting/drying damage in ornamental sandstone or to prevent pore plugging in reservoir sandstones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.