Abstract

Natural killer (NK) cells represent a major subpopulation of lymphocytes. These cells have effector functions as they recognize and kill transformed cells as well as microbially infected cells. In addition, alloreactive NK cells have been successfully used to treat patients with acute myeloid leukemia and other hematological malignancies. NK cells are also endowed with immunoregulatory functions since they secrete cytokines such as IFN-γ, which favor the development of T helper 1 (Th1) cells, and chemokines such as CCL3/MIP-1α and CCL4/MIP-1β, which recruit various inflammatory cells into sites of inflammation. In human blood, NK cells are divided into CD56(bright) CD16(dim) and CD56(dim) CD16(bright) subsets. These subsets have different phenotypic expression and may have different functions; the former subset is more immunoregulatory and the latter is more cytolytic. The CD56(bright)CD16(dim) NK cells home into tissues such as the peripheral lymph nodes (LNs) under physiological conditions because they express the LN homing receptor CCR7 and they respond to CCL19/MIP-3β and CCL21/SLC chemokines. They also distribute into adenoid tissues or decidual uterus following the CXCR3/CXCL10 or CXCR4/CXCL12 axis. On the other hand, both NK cell subsets migrate into inflammatory sites, with more CD56(dim)CD16(bright) NK cells distributing into inflamed liver and lungs. CCR5/CCL5 axis plays an important role in the accumulation of NK cells in virally infected sites as well as during parasitic infections. CD56(bright)CD16(dim) cells also migrate into autoimmune sites such as inflamed synovial fluids in patients having rheumatoid arthritis facilitated by the CCR5/CCL3/CCL4/CCL5 axis, whereas they distribute into inflamed brains aided by the CX₃CR1/CX₃CL1 axis. On the other hand, CD56(dim)CD16(bright) NK cells accumulate in the liver of patients with primary biliary disease aided by the CXCR1/CXCL8 axis. However, the types of chemokines that contribute to their accumulation in target organs during graft vs. host (GvH) disease are not known. Further, chemokines activate NK cells to become highly cytolytic cells known as CC chemokine-activated killer (CHAK) cells that kill tumor cells. In summary, chemokines whether secreted in an autocrine or paracrine fashion regulate various biological functions of NK cells. Depending on the tissue and the chemokine secreted, NK cells may ameliorate the disease such as their roles in combating tumors or virally infected cells, and their therapeutic potentials in treating leukemias and other hematological malignancies, as well as reducing the incidence of GvH disease. In contrast, they may exacerbate the disease by damaging the affected tissues through direct cytotoxicity or by the release of multiple inflammatory cytokines and chemokines. Examples are their deleterious roles in autoimmune diseases such as rheumatoid arthritis and primary biliary cirrhosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call