Abstract

The effects of charge transfer and molecular chain length on the electrical polarizability of doped trans-polyacetylene oligomers have been investigated using a series of quantum chemical methods ranging from Hartree-Fock to current density functional theory. Polarizability tensors of pristine and metal-doped trans-polyacetylene oligomers have been estimated. The nature of variations of polarizability tensor components are quite different for pristine and doped oligomers. For doped samples, distinct minima in the average static polarizabilities per acetylene unit have been observed. The results suggest that the competitive role of charge-transfer interaction and oligomer chain length are responsible for the observed minima. To simulate the ab initio results on polarizability variation, we propose a mathematical model that describes the minima quite satisfactorily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.