Abstract

The development of high-performance adsorbents for environmental remediation is a current need, and ionic porous organic polymers (iPOPs), due to their high physicochemical stability, high surface area, added electrostatic interaction, and easy reusability, have already established themselves as a better adsorbent. However, research on the structural design of high-performance iPOP-based adsorbents is still nascent. This study explored the building blocks' role in optimizing the polymers' charge density and surface area to develop better polymeric adsorbents. Among the three synthesized polymers, iPOP-ZN1, owing to its high surface area and high charge density in its active sites, proved to be the best adsorbent for adsorbing inorganic and organic pollutants in an aqueous medium. The polymers were efficient enough to capture and store iodine vapor in the solid state. Further, this study tried to address using iodine-loaded polymers in antibacterial action. Iodine-loaded iPOPs show impressive antibacterial behavior against E. coli, B. subtilis, and H. pylori.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.