Abstract

During this quarter, we have investigated rates and product compositions of NO reduction on chars in gases. N{sub 2} and CO{sub 2} internal surface areas of chars, selected from runs of various pyrolysis and reaction conditions have been measured to assist in interpreting the experimental results. Implications of Langmuir- Hinshelwood mechanisms and mass transfer limitations were examined. Oxidants suppress NO reduction on bituminous coal char more than on lignite char. Observations suggest that NO adsorption and desorption of stable surface oxygen complexes are potentially important rate- limiting steps and may be catalyzed by mineral matter during reburning with lignite char. Relative inert nature of lignite char to CO{sub 2} presence may have potential value in use of fuel system involving both solid and volatile fuels. Lignite char produced at 950 C and zero holding time has higher reactivity than that produced at 1100 C and 5 min holding time. Bituminous coal chars produced at these two conditions, however, have similar reactivity with NO. Internal surface areas of both type chars vary with pyrolysis conditions and gas composition in the subsequent reaction. When oxidants are introduced in the feed, internal surface areas of these two chars vary in opposite directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call