Abstract

This study deals with modeling the propagation and the chain transfer reactions in the free radical polymerization of ethylene, methyl methacrylate (MMA), and acrylamide (AM). The chain transfer agents modeled in the free radical polymerization of ethylene are the experimentally widely used species such as ethylene, methane, ethane, propane, trimethylamine, dimethylamine, chloroform, and carbon tetrachloride. The role of 4-X-thiophenols as chain transfer agents in the polymerization of MMA and AM has been investigated. Geometry optimizations have been carried out with the B3LYP/6-31+G(d) methodology. Reaction rate constants are calculated via the standard transition-state theory with the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d), MPWB1K/6-311+G(3df,2p)//B3LYP/6-31+G(d), and M05-2X/6-311+G(3df,2p)//B3LYP/6-31+G(d) methodologies, which reproduce qualitatively the experimental trends for the chain transfer rate constants. The usage of simple continuum models with the MPWB1K/6-311+G(3df,2p)//B3LYP/6-31+G(d) meth...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.