Abstract
Using anti-Tac (anti-alpha chain) and 2R-B (anti-beta chain) antibodies, we studied the roles of IL-2 receptor subunits (alpha and beta chains) in the formation of IL-2 and high-affinity IL-2 receptor complex, which is the initial event of IL-2 induced T cell growth. High-affinity IL-2 binding which was undetectable in the presence of 2R-B antibody at 4 degrees C became fully detectable when examined at 37 degrees C, which explained the lack of inhibition by 2R-B antibody of IL-2-induced proliferation of the cells expressing high-affinity IL-2 receptor. We further studied the mechanism of the 'reappearance' of high-affinity IL-2 binding in the presence of 2R-B antibody. The addition of IL-2 to the cells preincubated with radiolabeled or fluorescence-labeled 2R-B antibody resulted in a marked decrease in the antibody bound to the cells expressing high-affinity IL-2 receptor at 37 degrees C. This decrease was blocked by the presence of anti-Tac antibody, which inhibited IL-2 binding to alpha chain, but not by 7G7/B6 antibody, which recognized a non-IL-2 binding site of its chain. Furthermore, the decrease in cell-bound 2R-B antibody was not due to the internalization of beta chain-2R-B antibody complex, because the amount of cell-bound Mik-beta3 antibody recognizing a non-IL-2 binding epitope of beta chain remained unchanged, nor to the inhibition by simple competitive binding of IL-2 molecules to beta chain as judged from comparative studies of competitive binding inhibition. Taking these data together, the reappearance of high-affinity IL-2 binding was considered to be caused by the replacement of 2R-B antibody at the IL-2 binding site of beta chain by alpha chain-mediated IL-2, and it was strongly suggested that alpha chain-IL-2 complex has a key role in the formation of the ternary complex of IL-2 and high-affinity IL-2 receptor. alpha chain may function as a dimension converter of IL-2 to effectively deliver IL-2 molecules to a relatively small number of beta chains in the dynamics of the formation of high-affinity IL-2 binding in T cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.