Abstract

Stimuli-responsive polymers functionalized with reactive inorganic groups enable creation of macromolecular structures such as hydrogels, micelles, and coatings that demonstrate smart behavior. Prior studies using poly(N-isopropyl acrylamide-co-3-(trimethoxysilyl)propyl methacrylate) (P(NIPAM-co-TMA)) have stabilized micelles and produced functional nanoscale coatings; however, such systems show limited responsiveness over multiple thermal cycles. Here, polymer architecture and TMA content are connected to the aqueous self-assembly, optical response, and thermo-reversibility of two distinct types of PNIPAM/TMA copolymers: random P(NIPAM-co-TMA), and a 'blocky-functionalized' copolymer where TMA is localized to one portion of the chain, P(NIPAM-b-NIPAM-co-TMA). Aqueous solution behavior characterized via cloud point testing (CPT), dynamic light scattering (DLS), and variable-temperature nuclear magnetic resonance spectroscopy (NMR) demonstrates that thermoresponsiveness and thermoreversibility over multiple cycles is a strong function of polymer configuration and TMA content. Despite low TMA content (≤2% mol), blocky-functionalized copolymers assemble into small, well-ordered structures above the cloud point that lead to distinct transmittance behaviors and stimuli-responsiveness over multiple cycles. Conversely, random copolymers form disordered aggregates at elevated temperatures, and only exhibit thermoreversibility at negligible TMA fractions (0.5% mol); higher TMA content leads to irreversible structure formation. This understanding of the architectural and assembly effects on the thermal cyclability of aqueous PNIPAM-co-TMA can be used to improve the scalability of responsive polymer applications requiring thermoreversible behavior, including sensing, separations, and functional coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.