Abstract

The importance of hydrogen sulfide (H2S) in physiology and disease is being increasingly recognized in recent years. Unlike nitric oxide (NO) that signals mainly through soluble guanyl cyclase (sGC)/cGMP, H2S is more promiscuous, affecting multiple pathways. It interacts with ion channels, enzymes, transcription factors and receptors. It was originally reported that H2S does not alter the levels of cyclic nucleotides. More recent publications, however, have shown increases in intracellular cGMP following exposure of cells or tissues to exogenously administered or endogenously produced H2S. Herein, we discuss the evidence for the participation of cGMP in H2S signaling and reconcile the seemingly divergent results presented in the literature on the role of this cyclic nucleotide in the biological actions of H2S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.