Abstract

Adrenomedullin (AM) and their receptor components, calcitonin-receptor-like receptor (CRLR) and receptor activity-modifying protein (RAMP1, RMP2 and RAMP3) are widely expressed in the central nervous system, including cerebellum. We have shown that AM binding sites are altered in cerebellum during hypertension, suggesting a role for cerebellar adrenomedullinergic system in blood pressure regulation. To further evaluate the role of AM in cerebellum, we assessed the expression of AM, RAMP1, RAMP2, RAMP3 and CRLR in the cerebellar vermis of 8 and 16week old spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. In addition, the effect of microinjection of AM into rat cerebellar vermis on arterial blood pressure (BP) was determined. Animals were sacrificed by decapitation and cerebellar vermis was dissected for quantification of AM, CRLR, RAMP1, RAMP2 and RAMP3 expression using western blot analysis. Another group of male, 16week old SHR and WKY rats was anesthetized, and a cannula was implanted in the cerebellar vermis. Following recovery AM (0.02 to 200pmol/5μL) or vehicle was injected into cerebellar vermis. BP was determined, before and after treatments, by non-invasive plethysmography. In addition, to establish the receptor subtype involved in AM action in vivo, animals received microinjections of AM22–52 (200pmol/5μL), an AM1 receptor antagonist, or the CGRP1 receptor antagonist, CGRP8–37 (200pmol/5μL) into the cerebellar vermis, administered simultaneously with AM or vehicle microinjection. Cannulation was verified post mortem with the in situ injection of a dye solution. Our findings demonstrated that the expression of CRLR, RAMP1 and RAMP3 was higher in cerebellum of SHR rats, while AM and RAMP2 expression was lower than those of WKY rats, both in 8 and 16week old rats. In vivo microinjection of AM into the cerebellar vermis caused a profound, dose dependent, hypotensive effect in SHR but not in normotensive WKY rats. Coinjections of a putative AM receptor antagonist, AM22–52 abolished the decreases in mean arterial pressure (MAP) evoked by AM, showing that AM acts through its AM1 receptor in the vermis to reduce MAP. These findings demonstrate a dysregulation of cerebellar AM-system during hypertension, and suggest that cerebellar AM plays an important role in the regulation of BP. Likewise; they constitute a novel mechanism of BP control which has not been described so far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.