Abstract
The Voronoi tessellation technique and solid modeling methods are used in this work to create virtual random structures and link cell morphology with the mechanical behavior. Their compression responses are analyzed using the finite element method. First, the effect of loading direction is analyzed for structures with different levels of randomness characterized by a regularity parameter to assess the degree of scatter in the results. Subsequently, morphological characteristics such as arrangement of cells and randomness are analyzed separately. The effect of relative density on structures with different levels of randomness is also studied. Simulations suggest that at low relative densities the arrangement of cells has a negligible effect on the compression response of random honeycombs. On the contrary, the cellular randomness has significant influence on the elastic and plastic characteristics especially when fully random structures are compared with the regular counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.