Abstract

Nanoscale CeO2 (nanoceria) is a prototypical system that presents d0 ferromagnetism. Using a combination of x-ray absorption spectroscopy, x-ray magnetic circular dichroism and modelling, we show that nanostructure, defects and disorder, and non-stoichiometry create magnetically polarized Ce 4f and O 2p hybridized states captured by the vacancy orbitals (Vorb) that are vital to ferromagnetism. Further, we demonstrate that foreign ions (Fe and Co) enhance the moment at Ce 4f sites while the number of Vorb is unchanged, pointing clearly to the mechanism of orbital hybridization being key missing ingredient to understanding the unexpected ferromagnetism in many nanoscale dilute magnetic oxides and semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.