Abstract

Breast cancer (BC) is among the most prevalent type of malignancy affecting females worldwide. BC is classified into different types according to the status of the expression of receptors such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and progesterone receptor (PR). Androgen receptor (AR) appears to be a promising therapeutic target of BC. Binding of 5α-dihydrotestosterone (DHT) to AR controls the expression of microRNA (miRNA) molecules in BC, consequently, affecting protein expression. One of these proteins is the transmembrane glycoprotein cluster of differentiation 44 (CD44). Remarkably, CD44 is a common marker of cancer stem cells in BC. It functions as a co-receptor for a broad diversity of extracellular matrix ligands. Several ligands, primarily hyaluronic acid (HA), can interact with CD44 and mediate its functions. CD44 promotes a variety of functions independently or in cooperation with other cell-surface receptors through activation of varied signaling pathways like Rho GTPases, Ras-MAPK, and PI3K/AKT pathways to regulate cell adhesion, migration, survival, invasion, and epithelial-mesenchymal transition. In this review, we present the relations between AR, miRNA, and CD44 and their roles in BC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call