Abstract
The influence of cation exchange processes on the transport behavior of the cationic β-blockers atenolol and metoprolol was investigated by applying saturated laboratory column experiments. Breakthrough curves using natural sediments under different competitive conditions were generated and resulting sorption coefficients were compared. For the cationic species of atenolol (at pH = 8), the existence and dominating role of cation exchange processes were demonstrated by varying calcium concentrations. No effect of atenolol concentration on its retardation was observed within a wide concentration range. The breakthrough curve comparison of atenolol and the more hydrophobic metoprolol under constant conditions showed a significantly stronger retardation for metoprolol than for atenolol. However, additional non-polar interactions cannot explain the observed differences as they are determined to be negligible for both compounds. Due to the dominating role of cation exchange processes for the cationic species on overall sorption, a simple prediction of β-blocker transport in the subsurface by using KOC values derived from log KOW–log KOC correlations is not feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.