Abstract

The kinetics of low-temperature autooxidation of methyl oleate for a bimolecular mechanism of the degenerate branched reaction were analyzed taking into account changes in the methyl oleate concentration for different amounts of peroxides formed. This analysis made it possible to explain the experimental data. The role of the initial peroxide concentration in the mechanism and kinetics of the chain degenerate branched reaction of methyl oleate autooxidation was studied in the steady-state approximation and in the course of establishing a steady-state concentration of radicals. A systematic approach to estimating the antioxidant properties of lipids on the basis of the methyl oleate model was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call