Abstract

Early identification of atherosclerosis and at-risk lesions plays a critical role in reducing the burden of cardiovascular disease. While invasive coronary angiography serves as the gold standard for diagnosing coronary artery disease, non-invasive imaging techniques provide visualization of both anatomical and functional atherosclerotic processes prior to clinical presentation. The development of cardiac positron emission tomography (PET) has greatly enhanced our capability to diagnose and treat patients with early stages of atherosclerosis. Cardiac PET is a powerful, versatile non-invasive diagnostic tool with utility in the identification of high-risk plaques, myocardial perfusion defects, and viable myocardial tissue. Cardiac PET allows for comparisons of myocardial function both at time of rest and stress, providing accurate assessments of both myocardial perfusion and viability. Furthermore, novel PET techniques with unique radiotracers yield clinically relevant data on high-risk plaques in active progressive atherosclerosis. While PET exercise stress tests were previously difficult to perform given short radiotracer half-life, the development of the novel radiotracer Flurpiridaz F-18 provides a promising future for PET exercise stress imaging. In addition, hybrid imaging with computed tomography angiography (CTA) and cardiac magnetic resonance (CMR) provides integration of cardiac function and structure. In this review article, we discuss the principles of cardiac PET, the clinical applications of PET in diagnosing and prognosticating patients at risk for future cardiovascular events, compare PET with other non-invasive cardiac imaging modalities, and discuss future applications of PET in CVD evaluation and management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call