Abstract

Our previous studies demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) can selectively increase the permeability of blood-tumor barrier (BTB). In addition, low-dose EMAP-II significantly decreases the cyclic adenosine monophosphate (cAMP) concentration and the protein kinase A (PKA) expression level in tumor tissues in the rat C6 glioma model. In this study, an in vitro BTB model was used to investigate the potential role of cAMP/PKA signaling cascade in EMAP-II-induced BTB hyperpermeability. Our data revealed that low-dose EMAP-II (0.05nM) induced a significant decrease in total intracellular cAMP concentration and PKA activity in rat brain microvascular endothelial cells (RBMECs). Pretreatment with forskolin to increase intracellular cAMP nearly completely blocked the EMAP-II-induced decrease in transendothelial electric resistance and increase in horseradish peroxidase flux across the BTB. Similar pretreatment completely prevented the EMAP-II-induced changes in RhoA/Rho kinase activity, expression and distribution of tight junction-associated protein ZO-1, and myosin light chain phosphorylation, as well as actin cytoskeleton arrangement in RBMECs. Pretreatment with 6Bnz-cAMP to activate PKA significantly attenuated these EMAP-II-induced alterations in RBMECs. In summary, our present study demonstrates that the cAMP/PKA signaling cascade works as a crucial signaling pathway in EMAP-II-induced BTB hyperpermeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.